Histogram Publishing Method Based on Differential Privacy
نویسندگان
چکیده
منابع مشابه
Towards Accurate Histogram Publication under Differential Privacy
Histograms are the workhorse of data mining and analysis. This paper considers the problem of publishing histograms under differential privacy, one of the strongest privacy models. Existing differentially private histogram publication schemes have shown that clustering (or grouping) is a promising idea to improve the accuracy of sanitized histograms. However, none of them fully exploits the ben...
متن کاملOptimizing Histogram Queries under Differential Privacy
Differential privacy is a robust privacy standard that hasbeen successfully applied to a range of data analysis tasks.But despite much recent work, optimal strategies for answer-ing a collection of related queries are not known.We propose the matrix mechanism, a new algorithm foranswering a workload of predicate counting queries. Givena workload, the mechanism requests a...
متن کاملPublishing Set-Valued Data via Differential Privacy
Set-valued data provides enormous opportunities for various data mining tasks. In this paper, we study the problem of publishing set-valued data for data mining tasks under the rigorous differential privacy model. All existing data publishing methods for set-valued data are based on partitionbased privacy models, for example k-anonymity, which are vulnerable to privacy attacks based on backgrou...
متن کاملDifference Privacy Histogram Release Based on Isotonic Regression
Data release is likely to result in privacy disclosure, so appropriate privacy protection measures are required for various data release technologies in order to ensure the privacy and safety of information, while differential privacy as a reliable model for privacy protection is extensively researched and applied. This paper presents the histogram data publishing solutions under differential p...
متن کاملDifferential Privacy: An Estimation Theory-Based Method for Choosing Epsilon
Differential privacy is achieved by the introduction of Laplacian noise in the response to a query, establishing a precise trade-off between the level of differential privacy and the accuracy of the database response (via the amount of noise introduced). However, the amount of noise to add is typically defined through the scale parameter of the Laplace distribution, whose use may not be so intu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Computer Science and Engineering
سال: 2018
ISSN: 2475-8841
DOI: 10.12783/dtcse/csse2018/24489